《矩阵论》课程教学资源(书籍教材)研究生数学教学系列(工科类)矩阵论简明教程(编著:徐仲等)

第一章 矩阵的相似变换 §1.1特征值与特征向量 §1.2相似对角化 §1.3 Jordan标准形介绍 §1.4 Hamilton-Cayley定理 §1.5向量的内积 §1.6西相似下的标准形 习题一 第二章 范数理论 §2.1向量范数 §2.2矩阵范数 一、方阵的范数 二、与向量范数的相容性 三、从属范数 四、长方阵的范数 §2.3范数应用举例 一、矩阵的谱半径 二、矩阵的条件数 习题二 第三章 矩阵分析 §3.1矩阵序列 §3.2矩阵级数 §3.3矩阵函数 一、矩阵函数的定义 二、矩阵函数值的计算 三、常用矩阵函数的性质 §3.4矩阵的微分和积分 一、函数矩阵的微分和积分 二、数量函数对矩阵变量的导数 三、矩阵值函数对矩阵变量的导数 §3.5矩阵分析应用举例 一、求解一阶线性常系数微分方程组 二、求解矩阵方程 三、最小二乘问题 习题三 第四章 矩阵分解 §4.1矩阵的三角分解 一、三角分解及其存在惟一性问题 二、三角分解的紧凑计算格式 §4.2矩阵的QR分解 一、Householder矩阵与Givens矩阵 二、矩阵的QR分解 三、矩阵酉相似于Hessenberg矩阵 §4.3矩阵的满秩分解 一、Hermite标准形 二、矩阵的满秩分解 §4.4矩阵的奇异值分解 习题四 第五章 特征值的估计与表示 §5.1特征值界的估计 §5.2特征值的包含区域 一、Gerschgorin定理 二、特征值的隔离 三、Ostrowski定理 §5.3 Hermite矩阵特征值的表示 §5.4广义特征值问题 一、广义特征值问题 二、广义特征值的表示 习题五 第六章 广义逆矩阵 §6.1广义逆矩阵的概念 §6.2 {1}-逆及其应用 一、{1}-逆的计算及有关性质 二、{1}-逆的应用 三、由{1}-逆构造其他的广义逆矩阵 §6.3 Moore-Penrose逆A+ 一、A+的计算及有关性质 二、A+在解线性方程组中的应用 习题六 第七章 矩阵的直积 §7.1直积的定义和性质 §7.2直积的应用 一、矩阵的拉直及其与直积的关系 二、线性矩阵方程的可解性及其求解 习题七 习题答案与提示
文件格式: PDF大小: 4.22MB页数: 187
点击进入文档下载页(PDF格式)

您可能感兴趣的文档